Nieuws

Datapoint: ov-lijnen – Wat kunnen overheden doen om het ov betrouwbaarder te maken?

07 jul 2020

Opdrachtgever

Keypoint

Projectrol

Nieuws

Start project

jul 2020

Datapoint: ov-lijnen – Wat kunnen overheden doen om het ov betrouwbaarder te maken?
Patrick

Patrick

Directeur

”Werken met mensen in een wereld van techniek” is Patricks drijfveer

Patrick is directeur van Keypoint en is analytisch, gedreven en een 'mensen-mens'.

Meer over Patrick

Andere betrokken collega's:

Justin

Figuur 1: OV-lijnen (blauw) en haltes in Haarlemmermeer (groen: met DRIS, rood: geen DRIS) 

Inmiddels is het drie weken geleden dat Datapoint gelanceerd is. In de afgelopen tijd hebben we veel interesse gemerkt vanuit  het mobiliteitsveld en veel positieve reacties mogen ontvangen. We merken ook  dat een deel van onze gebruikers enigszins overweldigd is door de vele mogelijkheden die er zijn om Datapoint te benutten.  

Daarom komen we nu met een blog, waarin we telkens één of meerdere datalagen behandelen. We trappen af met de ov-lijnen en haltes, afkomstig uit het NDOV. Deze blog gaat in op de inzichten die de data biedt, welke combinaties met andere databronnen te maken zijn, waar de data vandaan komt en welke waarde Datapoint  toevoegt.  

Wat de data laat zien 

In de figuur bovenaan deze pagina zie je de data voor Hoofddorp en Schiphol. De lagen OV-lijnen en OV-haltes laten de bus, tram en metro routes en hun bijbehorende haltes zien.  Daarnaast kan de frequentie van het OV op de verschillende trajecten afgeleid worden uit de dikte van de lijn. De kleur van de locatie-indicator van de haltes geeft aan of er dynamische reisinformatie (DRIS) is op de halte. Wat deze figuur snel duidelijk maakt is dat op enkele hoofdassen hoogfrequent OV beschikbaar is en dat hier ook vaak actuele reisinformatie verstrekt wordt.  

Naast de routes en frequentie bevat Datapoint ook een inschatting van de rijtijdbetrouwbaarheid . Met andere woorden, Datapoint geeft inzicht in de punctualiteit van het OV. De onderstaande figuur toont in drie categorieën een inschatting van deze betrouwbaarheid. De groene kleur betekent dat het OV erg betrouwbaar is. Oranje staat voor redelijk betrouwbaar en rood impliceert relatief onbetrouwbaar OV. Voor enkele trajecten kan geen goede inschatting van de punctualiteit worden gemaakt, deze lijnen zijn in het grijs weergegeven. Wanneer het OV minder betrouwbaar is, kan er een grotere behoefte zijn aan actuele reisinformatie (zeker bij lagere frequenties), wat datapoint dus in één oogopslag weergeeft. Op deze manier biedt Datapoint een datagedreven tool om investeringsbeslissingen voor het OV te ondersteunen. 

Figuur 2: Rijtijdbetrouwbaarheid OV in Hoofddorp 

Datacombinaties 

Naast deze informatie over het OV zelf, biedt Datapoint ook een grote meerwaarde in het maken van combinaties met andere bronnen. Door de ingevoerde locaties van scholen kan bijvoorbeeld een wijziging in de routering of de locaties van haltes beter onderbouwd worden. CBS data op postcode 4 gebied, waarin bijvoorbeeld adressendichtheid kan worden weergegeven kan gebruikt worden. Ook de locaties van OV-fietspunten zijn opgenomen, waarmee snel gezien kan worden welke  (deel)modaliteitsopties reizigers hebben rondom OV haltes. Kortom: analyses zijn sneller, vollediger en kunnen makkelijker worden gevisualiseerd. 

Een andere waardevolle combinatie is die met de locaties van intelligente verkeerslichten (iVRI’s). Een iVRI kan, met de juiste instellingen, het OV conditioneel voorrang verlenen, bijvoorbeeld als de bus achterloopt op de dienstregeling. Datapoint brengt de locaties van deze slimme verkeerslichten in kaart en geeft per VRI aan of deze reeds geschikt is voor OV-prioritering. In combinatie met de punctualiteitsdata wordt het snel duidelijk waar kansen liggen om de rijtijdbetrouwbaarheid van het OV een boost te geven. Onderstaande figuur geeft dit weer voor Deventer, waar al een pilot met slimme OV prioritering heeft plaatsgevonden.  

Figuur 3: Rijtijdbetrouwbaarheid en iVRI’s met (groen) en zonder (rood) prioriteringscase in Deventer 

Betrouwbare data 

De OV data is afkomstig uit het NDOV loket. Specifiek komen de routes en frequenties uit de koppelvlak 1 (KV1) dataset, waarin de dienstregelingen worden gecommuniceerd. De rijtijdbetrouwbaarheid leiden we af uit KV6, waar punctualiteit gedeeld wordt. De haltes zijn afkomstig uit het centraal haltebestand. Omdat de data rechtstreeks vanuit de vervoerders aangeleverd wordt, is de betrouwbaarheid van de data hoog. Keypoint berekent zelf een inschatting van de rijtijdbetrouwbaarheid. Hiervoor wordt gekeken naar het verschil tussen de 85e (vertragingsrijtijd) en 15e percentiel (free flow) rijtijd. Bij een verschil kleiner dan 50% is de rijtijd betrouwbaar, 50-100% redelijk betrouwbaar en >100% onbetrouwbaar. Onbetrouwbaar betekent dus dat een vertraagd segment twee keer zo lang duurt als een ‘free flow’ rit. In een aantal gebieden in Nederland wordt gewerkt met een lager detailniveau van de data, zodat de interpretaties beperkingen kennen. Veelal leveren de analyses echter een betrouwbaar beeld.  

Conclusie 

Datapoint biedt beleidsmakers een tool waarmee beslissingen over het OV ondersteund kunnen worden. Voor de lange termijn biedt data zoals adressendichtheid en de locatie van scholen een meerwaarde voor meer strategische keuzes, terwijl de locaties van iVRI’s en de DRIS-indicatie quick-wins in beeld kunnen brengen. Met maatwerk kunnen wij uw analyses sterker maken. 

Terug naar overzicht

Neem contact op over dit project

Gewoon een vraag of wilt u graag een vrijblijvend kennismakingsgesprek? Vul onderstaand formulier in en wij nemen uiterlijk de eerstvolgende werkdag contact met u op.

Andere projecten

Ook leuk om te lezen

P+R: bestemming bereikt?!

Nieuws

08 mrt
Ronnie Poorterman Door

Ronnie Poorterman

P+R: bestemming bereikt?!

Onder invloed van onder andere de woningbouwopgave en de energietransitie verandert onze leefomgeving in hoog tempo. Daarbij geven we vooral in steden minder ruimte aan de auto. Dit betekent dat we de overstap van auto op openbaar vervoer en actieve mobiliteit aan de rand van de stad moeten faciliteren. Keypoint voerde een scan uit en bepaalde zo voor vier bestaande P+R terreinen in Arnhem en Nijmegen welke maatregelen gewenst zijn om deze terreinen op te waarderen naar multimodale mobiliteitshub.

Lees verder
Een netwerk van compacte buurthubs voor deelmobiliteit – de eerste ervaringen in Enschede

Project

01 feb
Justin Door

Justin

Een netwerk van compacte buurthubs voor deelmobiliteit – de eerste ervaringen in Enschede

In toenemende mate werken publieke en private partijen samen aan duurzame oplossingen voor verstedelijking en mobiliteit. Eén van die oplossingen is het realiseren van buurthubs waar diverse providers deelmobiliteit aanbieden. Ook Enschede heeft zich op dat pad begeven en gaat voor een uitgebreid netwerk van compacte buurthubs. Keypoint heeft een tussenevaluatie gemaakt voor deze hubs.

Lees verder
Escapisme doorn in het oog van deelmobiliteit

Nieuws

14 dec
Ward Door

Ward

Escapisme doorn in het oog van deelmobiliteit

In zijn blogserie kijkt Ward de Jong vanuit verschillende invalshoeken naar deelmobiliteit en neemt hij de lezer mee in de wereld van dit snel groeiende fenomeen. De laatste blog uit de reeks: Escapisme doorn in het oog van deelmobiliteit.

Lees verder