Nieuws

Datapoint: ov-lijnen – Wat kunnen overheden doen om het ov betrouwbaarder te maken?

07 jul 2020

Opdrachtgever

Keypoint

Projectrol

Nieuws

Start project

jul 2020

Datapoint: ov-lijnen – Wat kunnen overheden doen om het ov betrouwbaarder te maken?
Patrick

Patrick

Directeur

”Werken met mensen in een wereld van techniek” is Patricks drijfveer

Patrick is directeur van Keypoint en is analytisch, gedreven en een 'mensen-mens'.

Meer over Patrick

Andere betrokken collega's:

Justin

Figuur 1: OV-lijnen (blauw) en haltes in Haarlemmermeer (groen: met DRIS, rood: geen DRIS) 

Inmiddels is het drie weken geleden dat Datapoint gelanceerd is. In de afgelopen tijd hebben we veel interesse gemerkt vanuit  het mobiliteitsveld en veel positieve reacties mogen ontvangen. We merken ook  dat een deel van onze gebruikers enigszins overweldigd is door de vele mogelijkheden die er zijn om Datapoint te benutten.  

Daarom komen we nu met een blog, waarin we telkens één of meerdere datalagen behandelen. We trappen af met de ov-lijnen en haltes, afkomstig uit het NDOV. Deze blog gaat in op de inzichten die de data biedt, welke combinaties met andere databronnen te maken zijn, waar de data vandaan komt en welke waarde Datapoint  toevoegt.  

Wat de data laat zien 

In de figuur bovenaan deze pagina zie je de data voor Hoofddorp en Schiphol. De lagen OV-lijnen en OV-haltes laten de bus, tram en metro routes en hun bijbehorende haltes zien.  Daarnaast kan de frequentie van het OV op de verschillende trajecten afgeleid worden uit de dikte van de lijn. De kleur van de locatie-indicator van de haltes geeft aan of er dynamische reisinformatie (DRIS) is op de halte. Wat deze figuur snel duidelijk maakt is dat op enkele hoofdassen hoogfrequent OV beschikbaar is en dat hier ook vaak actuele reisinformatie verstrekt wordt.  

Naast de routes en frequentie bevat Datapoint ook een inschatting van de rijtijdbetrouwbaarheid . Met andere woorden, Datapoint geeft inzicht in de punctualiteit van het OV. De onderstaande figuur toont in drie categorieën een inschatting van deze betrouwbaarheid. De groene kleur betekent dat het OV erg betrouwbaar is. Oranje staat voor redelijk betrouwbaar en rood impliceert relatief onbetrouwbaar OV. Voor enkele trajecten kan geen goede inschatting van de punctualiteit worden gemaakt, deze lijnen zijn in het grijs weergegeven. Wanneer het OV minder betrouwbaar is, kan er een grotere behoefte zijn aan actuele reisinformatie (zeker bij lagere frequenties), wat datapoint dus in één oogopslag weergeeft. Op deze manier biedt Datapoint een datagedreven tool om investeringsbeslissingen voor het OV te ondersteunen. 

Figuur 2: Rijtijdbetrouwbaarheid OV in Hoofddorp 

Datacombinaties 

Naast deze informatie over het OV zelf, biedt Datapoint ook een grote meerwaarde in het maken van combinaties met andere bronnen. Door de ingevoerde locaties van scholen kan bijvoorbeeld een wijziging in de routering of de locaties van haltes beter onderbouwd worden. CBS data op postcode 4 gebied, waarin bijvoorbeeld adressendichtheid kan worden weergegeven kan gebruikt worden. Ook de locaties van OV-fietspunten zijn opgenomen, waarmee snel gezien kan worden welke  (deel)modaliteitsopties reizigers hebben rondom OV haltes. Kortom: analyses zijn sneller, vollediger en kunnen makkelijker worden gevisualiseerd. 

Een andere waardevolle combinatie is die met de locaties van intelligente verkeerslichten (iVRI’s). Een iVRI kan, met de juiste instellingen, het OV conditioneel voorrang verlenen, bijvoorbeeld als de bus achterloopt op de dienstregeling. Datapoint brengt de locaties van deze slimme verkeerslichten in kaart en geeft per VRI aan of deze reeds geschikt is voor OV-prioritering. In combinatie met de punctualiteitsdata wordt het snel duidelijk waar kansen liggen om de rijtijdbetrouwbaarheid van het OV een boost te geven. Onderstaande figuur geeft dit weer voor Deventer, waar al een pilot met slimme OV prioritering heeft plaatsgevonden.  

Figuur 3: Rijtijdbetrouwbaarheid en iVRI’s met (groen) en zonder (rood) prioriteringscase in Deventer 

Betrouwbare data 

De OV data is afkomstig uit het NDOV loket. Specifiek komen de routes en frequenties uit de koppelvlak 1 (KV1) dataset, waarin de dienstregelingen worden gecommuniceerd. De rijtijdbetrouwbaarheid leiden we af uit KV6, waar punctualiteit gedeeld wordt. De haltes zijn afkomstig uit het centraal haltebestand. Omdat de data rechtstreeks vanuit de vervoerders aangeleverd wordt, is de betrouwbaarheid van de data hoog. Keypoint berekent zelf een inschatting van de rijtijdbetrouwbaarheid. Hiervoor wordt gekeken naar het verschil tussen de 85e (vertragingsrijtijd) en 15e percentiel (free flow) rijtijd. Bij een verschil kleiner dan 50% is de rijtijd betrouwbaar, 50-100% redelijk betrouwbaar en >100% onbetrouwbaar. Onbetrouwbaar betekent dus dat een vertraagd segment twee keer zo lang duurt als een ‘free flow’ rit. In een aantal gebieden in Nederland wordt gewerkt met een lager detailniveau van de data, zodat de interpretaties beperkingen kennen. Veelal leveren de analyses echter een betrouwbaar beeld.  

Conclusie 

Datapoint biedt beleidsmakers een tool waarmee beslissingen over het OV ondersteund kunnen worden. Voor de lange termijn biedt data zoals adressendichtheid en de locatie van scholen een meerwaarde voor meer strategische keuzes, terwijl de locaties van iVRI’s en de DRIS-indicatie quick-wins in beeld kunnen brengen. Met maatwerk kunnen wij uw analyses sterker maken. 

Terug naar overzicht

Neem contact op over dit project

Gewoon een vraag of wilt u graag een vrijblijvend kennismakingsgesprek? Vul onderstaand formulier in en wij nemen uiterlijk de eerstvolgende werkdag contact met u op.

Andere projecten

Ook leuk om te lezen

Keypoint simuleert parkeerbeweging voor parkeerkelder villa

Project

14 sept
Patrick Door

Patrick

Keypoint simuleert parkeerbeweging voor parkeerkelder villa

Bij de bouw van een villa ontstaat onzekerheid over de autolift in de nieuwe parkeerkelder. Keypoint helpt met een simulatie van de parkeerbewegingen.

Lees verder
Openbare OV-data: Een analyse rondom de afsluiting van de Weesperstraat

Project

08 sept
Liesbeth Door

Liesbeth

Openbare OV-data: Een analyse rondom de afsluiting van de Weesperstraat

We hebben de sluiting van de Weesperstraat in Amsterdam onder de loep genomen. Door gebruikt te maken van openbare data kunnen we kijken naar de effecten op het openbaar vervoer. Liesbeth en Justin nodigen u uit om te kijken wat er onder andere mogelijk is met openbare OV-data. Lees hier verder over hun bevindingen:

Lees verder
Het fietsen is weer begonnen

Project

05 sept
Justin Door

Justin

Het fietsen is weer begonnen

Vele Scholieren stappen vandaag weer op de fiets om naar school te komen. Dit is goed nieuws in een samenleving waarin we meer mensen op de fiets willen krijgen. Justin vraagt uw aandacht voor de obstakels die middelbare scholieren tegenkomen als ze regelmatig naar school fietsen. En waarom die zo belangrijk zijn om op te lossen.

Lees verder